Algemeen Vlaams

Deze site is nog in vollen opbouw. Den boomstructuur hieronder word geleidelijk uitgebouwd op basis van onze discussies in de forums - komd gerust meediscussiŽren!
I. Beschouwingen
II. Spelling en uitspraak
III. Grammatica
IV. Woordenschat
V. Teksten
Uit: den blog van stijfvreter

Postscriptum over taalnatuurlijkheid

stijfvreter | Donderdag 7 april 2011

Dat de opvatting over taalnatuurlijkheid teruggaat tot de Bijbelse tijden is trouwens niet toevallig: de allereerste discussie in de geschiedenis van de taalfilosofie ging er al over. Onder de sofisten werd er namelijk veel gedebatteerd over "de juistheid van namen", zoals dat heette, en daarbij waren er twee kampen: aan de ene kant waren er de aanhangers van de zogenaamde fusei-theorie, die geloofden dat er een natuurlijke band is tussen taal en wereld (vandaar "fusei" dat ook de stam is van fysica), en anderzijds waren er die van de thesei-theorie, voor wie taal een kwestie is van "nomos", oftewel wet of conventie. De antipoden Parmenides (die vond dat er niets in de wereld echt veranderde en dat alle worden maar schijn was) en Heraclitus (die net beweerde dat alles altijd in wording was en dat "je nooit twee keer in dezelfde rivier kunt stappen") waren ook hier elkaars tegenstanders, want Parmenides was een overtuigde voorstander van de thesei-theorie, terwijl van Heraclitus vermoed wordt dat hij eerder neigde naar de fusei-theorie (maar echt zeker is men niet).


In die vorm komt het debat tussen fusei- en thesei-theoretici ook voor in de enige dialoog van Plato die aan het probleem van "de juistheid van namen" gewijd is, de Cratylus. Daarin blijkt dat de natuurlijkheid van taal vooral begrepen wordt - door de aanhangers van de fusei-theorie - in termen van klanksymboliek. We citeren De Pater & Swiggers (2000: 65): 'de r is geŽigend voor bewegingen, l roept het vloeibare op, o beeldt het ronde uit, de i het kleine, enzovoort.' Het is dan ook niet moeilijk voor Plato (bij monde van Socrates die met Cratylus dialogeert) om de fusei-theorie te weerleggen: het adjectief 'hard' in het Grieks is "skleros", dat echter een l bevat en dus net vloeibaarheid en zachtheid oproept. Plato laat Cratylus daarom ook toegeven dat "skleros" een "minder juiste" naam is, maar daarmee is de discussie uiteindelijk beslecht: de woorden van de taal zijn conventioneel.


De tegenstelling tussen de fusei- en de thesei-opvatting duikt ook op in Through the looking-glass (het vervolg op Alice's adventures in Wonderland) van Lewis Carroll, met name wanneer Alice in hoofdstuk 6 Humpty-Dumpty ontmoet. Humpty-Dumpty hangt een wel zeer extreme versie van de thesei-theorie aan, zoals blijkt uit de volgende, overbekende passage:


"'When I use a word,' Humpty-Dumpty said, in rather a scornful tone, 'it means just what I choose it to mean - neither more or less.'

'The question is,' said Alice, 'whether you can make words mean so many different things.'

'The question is,' said Humpty-Dumpty, 'which is to be master - that's all.'"


Om af te sluiten citeren we de notitie (in haar geheel) die Martin Gardner daarbij maakt in zijn vermaarde, geannoteerde editie van de Alice-boeken:


"Lewis Carroll was fully aware of the profundity in Humpty Dumpty's whimsical discourse on semantics. Humpty takes the point of view known in the Middle Ages as nominalism; the view that universal terms do not refer to objective existences but are nothing more than flatus vocis, verbal utterances. The view was skillfully defended by William of Occam and is now held by almost all contemporary logical empiricists.

Even in logic and mathematics, where terms are usually more precise than in other subject matters, enormous confusion often results from a failure to realize that words mean 'neither more of less' than what they are intended to mean. In Carroll's time a lively controversy in formal logic concerned the 'existential import' of Aristotle's four basic propositions. Do the universal statements 'All A is B' and 'No A is B' imply that A is a set that actually contains members? Is it implied in the particular statements 'Some A is B' and 'Some A is not B'?

Carroll answers these questions at some length on page 165 of his Symbolic Logic. The passage is worth quoting, for it is straight from the broad mouth of Humpty Dumpty.


The writers, and editors, of the Logical textbooks which run in the ordinary grooves - to whom I shall hereafter refer by the (I hope inoffensive) title 'The Logicians' - take, on this subject, what seems to me to be a more humble position than is at all necessary. They speak of the Copula of a Proposition 'with bated breath'; almost as if it were a living, conscious Entity, capable of declaring for itself what it chose to mean, and that we, poor human creatures, had nothing to do but to ascertain what was its sovereign will and pleasure, and submit to it.

In opposition to this view, I maintain that any writer of a book is fully authorised in attaching any meaning he likes to any word or phrase he intends to use. If I find an author saying, at the beginning of his book: 'Let it be understood that by the word 'black' I shall always mean 'white', and that by the word 'white' I shall always mean 'black',' I meekly accept his ruling, however injudicious I may think it.

And so, with regard to the question whether a Proposition is or is not to be understood as asserting the existence of its Subject, I maintain that every writer may adopt his own rule, provided of course that it is consistent with itself and with the accepted facts of Logic.

Let us consider certain views that may logically be held, and thus settle which of them may conveniently be held; after which I shall hold myself free to declare which of them I intend to hold.


The view adopted by Carroll (that both 'all' and 'some' imply existence but that 'no' leaves the question open) did not finally win out. In modern logic only the 'some' propositions are taken to imply that a class is not a null class. This does not, of course, invalidate the nominalistic attitude of Carroll and his egg. The current point of view was adopted solely because logicians believed it to be the most useful.

When logicians shifted their interest from the class logic of Aristotle to the propositional or truth-value calculus, another furious and funny debate (though mostly among non-logicians) raged over the meaning of 'material implication'. Most of the confusion sprang from a failure to realize that 'implies' in the statement 'A implies B' has a restricted meaning peculiar to the calculus and does not refer to any causal relation between A and B. A similar confusion still persists in regard to the multivalued logics in which terms such as and, not and implies have no common-sense or intuitive meaning; in fact, they have no meaning whatever other than that which is exactly defined by the matrix tables, which generate these 'connective' terms. Once this is fully understood, most of the mystery surrounding these queer logics evaporates.

In mathematics equal amounts of energy have been dissipated in useless argumentation over the 'meaning' of such phrases as 'imaginary number', 'transfinite number', and so on; useless because such words mean precisely what they are defined to mean; no more, no less.

On the other hand, if we wish to communicate accurately we are under a kind of moral obligation to avoid Humpty's practice of giving private meanings to commonly used words. 'May we ... make our words mean whatever we choose them to mean?' asks Roger W. Holmes in his article 'The Philosopher's Alice in Wonderland' (Antioch Review, Summer 1959). 'One thinks of a Soviet delegate using 'democracy' in a UN debate. May we pay our words extra, or is this the stuff that propaganda is made of? Do we have an obligation to past usage? In one sense words are our masters, or communication would be impossible. In another we are the masters; otherwise there could be no poetry.'"

(Lewis Carroll 2001. The Annotated Alice. The Definitive Edition., 224-227)